

Vendor:PCAT

Exam Code:PCAT-SECTION3

Exam Name:Pharmacy College Admission Test - Quantitative

Version: Demo

QUESTION 1

Evaluate the following definite integral:

$$\int_{2}^{4} \left(x^{5} - 6x^{3} + 8x + 2\right) dx$$

- A. 110
- B. 364
- C. 148
- D. 250

Correct Answer: B

You begin by solving the integral and then evaluating the result between the limits of 2 and 4.

$$\int_{2}^{4} \left(x^{5} - 6x^{3} + 8x + 2\right) dx = \left(\frac{x^{6}}{6} - \frac{6x^{4}}{4} + \frac{8x^{2}}{2} + 2x\right)_{2}^{4}$$

$$= \left(\frac{4}{6}\right)^{6} - \frac{6(4)^{4}}{4} + \frac{8(4)^{2}}{2} + 2(4) - \left(\frac{2}{6}\right)^{6} - \frac{6(2)^{4}}{4} + \frac{8(2)^{2}}{2} + 2(2)\right)$$

$$= \left(\frac{4096}{6} - \frac{1536}{4} + \frac{128}{2} + 8\right) - \left(\frac{64}{6} - \frac{96}{4} + \frac{32}{2} + 4\right)$$

$$= \frac{4448}{12} - \frac{80}{12} = \frac{4368}{12} = 364.$$

QUESTION 2

Evaluate the following derivative: d/dx(5a4)

- A. 0
- B. 5z4
- C. 20a3
- D. 5a3

Correct Answer: A

You begin by solving the integral and then evaluating the result between the limits of 2 and 4.

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

QUESTION 3

Chemistry students performed nine volume measurements of a solution during a lab and obtained the

following results:

{2.4mL, 3.2mL, 3.7mL, 3.7mL, 4.5mL, 6.8mL, 7.3mL, 8.1mL, 12.2mL}

What is the mean of the data set?

- A. 3.7mL
- B. 4.5mL
- C. 5.8mL
- D. 9.8mL

Correct Answer: C

The mean of a data set is the arithmetic average of the values of the data set or

$$\frac{2.4mL + 3.2mL + 3.7mL + 3.7mL + 4.5mL + 6.8mL + 7.3mL + 8.1mL + 12.2mL}{9}$$

$$=\frac{51.9mL}{9}=5.8mL.$$

QUESTION 4

What is the sum of the following polynomials? 5x + 3xy 6y2, 9xy + 7y2 4x and 8y2 + 7x + 12xy

- A. 12x+ 15xy 14y2
- B. x+ 9xy 6y2
- C. 8x+ 24xy 7y2
- D. 5x+ 12xy+ 7y2

Correct Answer: C

QUESTION 5

Evaluate the following indefinite integral: A. Option A

$$\int t^2 \left(\frac{5}{t} - \frac{t}{5}\right) dt$$

- A. $\frac{5t^2}{2} + \frac{t^4}{20} + C$ B. $\frac{5t^2}{2} + \frac{t^4}{20} C$ C. $-\frac{5t^2}{2} \frac{t^4}{20} + C$ D. $-\frac{5t^2}{2} + \frac{t^4}{20} + C$
- B. Option B
- C. Option C
- D. Option D

Correct Answer: B

QUESTION 6

Express in scientific notation: 13.9

A. 1.39×101

B. 1.39 x 101

 $C. 13.9 \times 101$

D. 13.9 × 101

Correct Answer: B

In scientific notation, the number 13.9 is 1.39×101 .

QUESTION 7

What are the roots of the quadratic equation $3x2 \times 10 = 0$?

A.
$$x = \sqrt{2}, -\frac{5}{3}$$

B.
$$x = 2$$
, $-\sqrt{\frac{5}{3}}$

A.
$$x = \sqrt{2}$$
, $-\frac{5}{3}$ B. $x = 2$, $-\sqrt{\frac{5}{3}}$ C. $x = -2$, $\sqrt{\frac{5}{3}}$ D. $x = 2$, $-\frac{5}{3}$

D.
$$x = 2$$
, $-\frac{5}{3}$

- A. Option A
- B. Option B

C. Option C

D. Option D

Correct Answer: D

QUESTION 8

$$5.4 \times 107) \div (2.7 \times 103) =$$

A.

Option A

B.

Option B

C.

Option C

D.

Option D

A.
$$-1.5 \times 10^4$$
 B. -2.0×10^4 C. -3.5×10^4 D. -5.0×10^4

$$R = 2.0 \times 10^4$$

$$C = -3.5 \times 10^4$$

D.
$$-5.0 \times 10^4$$

Correct Answer: B

To divide the two numbers in scientific notation, you have:

$$-5.4 \times 10^7 \div 2.7 \times 10^3 = \frac{-5.4 \times 10^7}{2.7 \times 10^3} = -\frac{5.4}{2.7} \times \frac{10^7}{10^3} = -2.0 \times 10^4.$$

QUESTION 9

What is the probability that two cards drawn from a deck of cards are of a black suit (e.g., either clubs or spades) if the first card drawn is replaced before the second card is drawn?

A. 1352/2704

B. 676/2704

C. 6/2704

D. 2/2704

Correct Answer: B

Because the two drawings are made from a complete deck of cards, the two events are independent of one another. You first need to determine the probability of drawing a card of twosuits from a deck of cards. Out of a total of 52 cards, there are 13 cards of any suit and 26 cards of a black suit. The probability of drawing a card of a black suit, P(A), is 26/52. Because the first card is replaced before the second drawing, the probability of drawing a card of the same suit, P(B), is also 26/52. Thus, the probability of drawing two cards of the same suit is

$$P(A \text{ and } B) = P(A) \cdot P(B) = \frac{26}{52} \cdot \frac{26}{52} = \frac{676}{2704}$$

QUESTION 10

Solve for x: 10 + 5x2 = 135

A. ±2

B. ±5

C. ±10

D. ±25

Correct Answer: B

QUESTION 11

Evaluate the following derivative:

$$\frac{d}{dx}(6x^4 - 4x^3)$$

A. 24x3 12x2

B. 24x3 + 12x2

C. 24x3 12x2

D. 24x3 + 12x2

Correct Answer: C

QUESTION 12

The ratio of boys to girls in the graduating	class of a school is 3:2.	. If there are a total of $^{\prime}$	430 students in the class,	how
many girls are in the graduating class?				

A. 74

B. 86

C. 172

D. 215

Correct Answer: C

To find the total number of girls in the science class, we must first find the fraction of students in the class who are girls. For every set of 5 students, 2 students are girls, yielding a fraction of 2/5. Thus, the total number of girls in the class is

 $\frac{2}{5}$ × 430 = 172.