1010/ Money Back Guarantee

Vendor:PCAT

Exam Code:PCAT-SECTION3

Exam Name:Pharmacy College Admission Test Quantitative

Version:Demo

QUESTION 1

Evaluate the following definite integral:
$\int_{2}^{4}\left(x^{5}-6 x^{3}+8 x+2\right) d x$
A. 110
B. 364
C. 148
D. 250

Correct Answer: B

You begin by solving the integral and then evaluating the result between the limits of 2 and 4 .

$$
\begin{aligned}
\int_{2}^{4}\left(x^{5}-6 x^{3}+8 x+2\right) d x & =\left(\frac{x^{6}}{6}-\frac{6 x^{4}}{4}+\frac{8 x^{2}}{2}+2 x\right)_{2}^{4} \\
& =\left(\frac{(4)^{6}}{6}-\frac{6(4)^{4}}{4}+\frac{8(4)^{2}}{2}+2(4)\right)-\left(\frac{(2)^{6}}{6}-\frac{6(2)^{4}}{4}+\frac{8(2)^{2}}{2}+2(2)\right) \\
& =\left(\frac{4096}{6}-\frac{1536}{4}+\frac{128}{2}+8\right)-\left(\frac{64}{6}-\frac{96}{4}+\frac{32}{2}+4\right) \\
& =\frac{4448}{12}-\frac{80}{12}=\frac{4368}{12}=364 .
\end{aligned}
$$

QUESTION 2

Evaluate the following derivative: $\mathrm{d} / \mathrm{dx}(5 \mathrm{a} 4)$
A. 0
B. $5 z 4$
C. 20 a 3
D. 5 a 3

Correct Answer: A

You begin by solving the integral and then evaluating the result between the limits of 2 and 4 .

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

QUESTION 3

Chemistry students performed nine volume measurements of a solution during a lab and obtained the following results:
$\{2.4 \mathrm{~mL}, 3.2 \mathrm{~mL}, 3.7 \mathrm{~mL}, 3.7 \mathrm{~mL}, 4.5 \mathrm{~mL}, 6.8 \mathrm{~mL}, 7.3 \mathrm{~mL}, 8.1 \mathrm{~mL}, 12.2 \mathrm{~mL}\}$
What is the mean of the data set?
A. 3.7 mL
B. 4.5 mL
C. 5.8 mL
D. 9.8 mL

Correct Answer: C
The mean of a data set is the arithmetic average of the values of the data set or

$$
\begin{aligned}
& \frac{2.4 m L+3.2 m L+3.7 m L+3.7 m L+4.5 m L+6.8 m L+7.3 m L+8.1 m L+12.2 m L}{9} \\
& =\frac{51.9 m L}{9}=5.8 \mathrm{~mL} .
\end{aligned}
$$

QUESTION 4

What is the sum of the following polynomials? $5 x+3 x y 6 y 2,9 x y+7 y 24 x$ and $8 y 2+7 x+12 x y$
A. $12 x+15 x y 14 y 2$
B. $x+9 x y 6 y 2$
C. $8 x+24 x y 7 y 2$
D. $5 x+12 x y+7 y 2$

Correct Answer: C

QUESTION 5

Evaluate the following indefinite integral: A. Option A

$$
\int t^{2}\left(\frac{5}{t}-\frac{t}{5}\right) d t
$$

A. $\frac{5 t^{2}}{2}+\frac{t^{4}}{20}+C$
B. $\frac{5 t^{2}}{2}+\frac{t^{4}}{20}-C$
C. $-\frac{5 t^{2}}{2}-\frac{t^{4}}{20}+C$
D. $-\frac{5 t^{2}}{2}+\frac{t^{4}}{20}+C$
B. Option B
C. Option C
D. Option D

Correct Answer: B

QUESTION 6

Express in scientific notation: 13.9
A. 1.39×101
B. 1.39×101
C. 13.9×101
D. 13.9×101

Correct Answer: B
In scientific notation, the number 13.9 is 1.39×101.

QUESTION 7

What are the roots of the quadratic equation $3 \times 2 \times 10=0$?
A. $x=\sqrt{2},-\frac{5}{3}$
B. $x=2 .-\sqrt{\frac{5}{3}}$
C. $x=-2, \sqrt{\frac{5}{3}}$
D. $x=2,-\frac{5}{3}$
A. Option A
B. Option B
C. Option C
D. Option D

Correct Answer: D

QUESTION 8

(
$5.4 \times 107) \div(2.7 \times 103)=$
A.

Option A
B.

Option B

C.

Option C
D.

Option D
A. -1.5×10^{4}
B. -2.0×10^{4}
C. -3.5×10^{4}
D. -5.0×10^{4}

Correct Answer: B

To divide the two numbers in scientific notation, you have:
$-5.4 \times 10^{7} \div 2.7 \times 10^{3}=\frac{-5.4 \times 10^{7}}{2.7 \times 10^{3}}=-\frac{5.4}{2.7} \times \frac{10^{7}}{10^{3}}=-2.0 \times 10^{4}$.

QUESTION 9

What is the probability that two cards drawn from a deck of cards are of a black suit (e.g., either clubs or spades) if the first card drawn is replaced before the second card is drawn?
A. $1352 / 2704$
B. $676 / 2704$
C. $6 / 2704$
D. $2 / 2704$

Correct Answer: B

Because the two drawings are made from a complete deck of cards, the two events are independent of one another. You first need to determine the probability of drawing a card of twosuits from a deck of cards. Out of a total of 52 cards, there are 13 cards of any suit and 26 cards of a black suit. The probability of drawing a card of a black suit, $P(A)$, is $26 / 52$. Because the first card is replaced before the second drawing, the probability of drawing a card of the same suit, $P(B)$, is also $26 / 52$. Thus, the probability of drawing two cards of the same suit is

$$
P(\mathrm{~A} \text { and } \mathrm{B})=\mathrm{P}(\mathrm{~A}) \cdot \mathrm{P}(\mathrm{~B})=\frac{26}{52} \cdot \frac{26}{52}=\frac{676}{2704}
$$

QUESTION 10

Solve for $\mathrm{x}: 10+5 \times 2=135$
A. ± 2
B. ± 5
C. ± 10
D. ± 25

Correct Answer: B

QUESTION 11

Evaluate the following derivative:

$$
\frac{d}{d x}\left(6 x^{4}-4 x^{3}\right)
$$

A. $24 \times 312 \times 2$
B. $24 \times 3+12 \times 2$
C. $24 \times 312 \times 2$
D. $24 \times 3+12 \times 2$

Correct Answer: C

QUESTION 12

The ratio of boys to girls in the graduating class of a school is $3: 2$. If there are a total of 430 students in the class, how many girls are in the graduating class?
A. 74
B. 86
C. 172
D. 215

Correct Answer: C

To find the total number of girls in the science class, we must first find the fraction of students in the class who are girls. For every set of 5 students, 2 students are girls, yielding a fraction of $2 / 5$. Thus, the total number of girls in the class is

$$
\frac{2}{5} \times 430=172 .
$$

